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Abstract
This article describes mathematical methods for estimating the top-tail of the wealth distribution and there-

from the share of total wealth that the richest p percent hold, which is an intuitive measure of inequality. As the
data base for the top-tail of the wealth distribution is inevitably less complete than the data for lower wealth,
the top-tail distribution is replaced by a parametric model based on a Pareto distribution. The different methods
for estimating the parameters are compared and new simulations are presented which favor the maximum-
likelihood estimator for the Pareto parameter α. New criteria for the choice of other parameters are presented
which have not yet been discussed in the literature before. The methods are applied to the 2012 data from
the ECB Household and Consumption Survey (HFCS) for Germany and the corresponding rich list from the
Manager Magazin. In addition to a presentation of all formulas, R scripts implementing them are provided by
the author.

1 Introduction

For some time, economists have paid little attention
to questions of inequality and wealth distribution. The
Nobel Prize economist Robert Lucas, e.g., declared
[1]: “Of the tendencies that are harmful to sound eco-
nomics, the most seductive, and in my opinion, the
most poisonous, is to focus on questions of distribu-
tion.” According to Robert H. Wade [2], this attitude
was due to the dominating theory of trickle-down eco-
nomics, which celebrates inequality as an incentive for
effort and creativity.

The “publishing sensation” (Wade) of Piketty’s “Cap-
ital in the Twenty-First Century” [3] has brought back
inequality into the focus of mainstream economists.
Piketty did not examine why inequality matters (see
[4] or [5] for this topic), but how it evolved over time.
Most of his data stemmed from tax records, which go
back to the beginning of the 19th century in some
cases. While tax data have the advantage that their
collection is obligatory, they have other shortcomings.
For about thirty years, governments in most OECD
countries have followed the consensus among main-
stream economists that taxes on the rich and aid to
the poor tend to be inversely correlated with economic
growth. This has resulted in tax cuts for the rich and
the elimination of some types of tax: the wealth tax,
e.g., was dropped in Germany in 1997, which has the

side effect that some information about wealth can no
longer be drawn from tax data. Another problem with
tax records is bias at the top tail because higher income
and wealth are more likely to be hidden in tax havens.

Alternative data sources are surveys like the Eu-
rosystem Household and Finance Consumption Sur-
vey (HFCS) [6]. Although the HFCS combines com-
prehensive information in a unified form across sev-
eral European countries, it suffers from bias at the top
tail, too. One reason for this bias is the random sam-
pling process which is very unlikely to represent the
rare values from the top tail of the distribution. An-
other reason is that the survey response rate is known
to be lower for higher income and wealth [7]. These ef-
fects make it necessary to correct for the missing rich
in some way.

To this end, Vermeulen [8] proposed to replace the
survey data for high wealth values with a parametric
model based on the Pareto distribution, i.e., a prob-
ability distribution with density f(w) = Cw−(α+1).
For parameter estimation, he suggested to combine the
survey data with rich lists like the Forbes World’s bil-
lionaires list. Bach et al. [9] applied this idea to the
HFCS data in combination with national rich lists for
different European countries. Eckerstorfer et al. [10]
relied only on the HFCS data, from which they ex-
trapolated the top-tail of the wealth distribution with
well-defined criteria for the choice of some model pa-

Technischer Bericht Nr. 2016-01, Hochschule Niederrhein, Fachbereich Elektrotechnik & Informatik (2016)



Dalitz: Estimating Wealth Distribution Technical Report 2016-01

rameters, which have been chosen in an ad-hoc man-
ner by Vermeulen and Bach et al. All authors used
these methods to estimate the wealth share of the rich-
est one-percent, which they found to increase with re-
spect to the raw HFCS data when the correction for the
missing rich is applied. The actual values for this share
were estimated to 33% for Germany [9] and 38% for
Austria [10].

This article provides a comprehensive summary of the
statistical model and how it is used to estimate the
wealth share of the top one percent. It is organized
as follows: section 2 describes the underlying HFCS
data and the rich list for Germany. Section 3 describes
the statistical model and how it is utilized for comput-
ing the percentile wealth share. Section 4 gives a sur-
vey of methods for estimating the model parameters. It
should be noted, that criteria for determining some of
these parameters have not yet been discussed in the lit-
erature. The results of these methods when applied to
the data for Germany are presented in section 5. The R
code written for the present study can be downloaded
from the author’s website1.

2 Data base

This study is based on two data sources: the Eu-
rosystem Household Finance and Consumption Sur-
vey (HFCS) 2012, and the Manager Magazin rich list
from 2012 with extended information collected by the
Deutsches Institut für Wirtschaftsforschung (DIW).

The HFCS was performed between 2008 and 2011 by
the national banks in the Eurosystem countries Bel-
gium, Germany, Spain, France, Italy, Greece, Cyprus,
Luxembourg, Malta, Netherlands, Austria, Portugal,
Slovenia, Slovakia, and Finland. In each country, a
questionnaire was sent to sample households on ba-
sis of the sampling criteria described in [6]. From all
the data collected, the present study only uses the net
wealth (variable DN3001) for country Germany (vari-
able SA0100 = DE). To compensate for sampling er-
rors, two counter-measures were taken by the national
banks:

• As rich households are known to have a lower re-
sponse rate, rich households were over-sampled

1http://informatik.hsnr.de/˜dalitz/data/
wealthshare/

on basis of geographical area.

• To each response, a household weight (variable
HW0010) was assigned that estimates the num-
ber of households that this particular household
represents. The rough idea, but no details, of the
weighting process is described in [6].

There is some controversy, in which situations the
weights should be used. Bach et al. [9] heavily re-
lied on the weights because they used linear regression
for estimating the Pareto parameter α. Eckerstorfer et
al. [10] however ignored the weights in some calcu-
lations to “limit the influence of [..] unknown implicit
assumptions.” The present study uses weights through-
out.

To deal with item non-response, the HFCS data also
provides imputed values for missing variable values.
This only affects the variable net wealth, but not the
household weights. For each missing value, five im-
puted values are provided, such that there are five dif-
ferent complete data sets. These can be used in two dif-
ferent ways. One is by averaging the variables for each
household over the five sets, a method used by Bach et
al. in [9]. This is called the averaged HFCS data in
this paper. The other method is to take each imputed
data set separately to eventually obtain a range for the
observables of interest, a method used by Eckerstorfer
et al. in [10].

The Manager Magazin annually publishes a list of the
500 richest families in Germany. Their net wealth is
estimated from different sources, which include infor-
mation provided by the person themselves. The ed-
itors of the list indicate that the list is incomplete
because some persons have asked for removal from
the list. To make the information based on families
compatible with the HFCS data based on households,
Bach et al. have collected information from public
sources about the number of households for each fam-
ily. Moreover they have identified non-residents on the
list and recommend to only use the top 200 entries
from this list. The present study uses these data as
provided by Bach et al., but with the non-residents re-
moved, and down to the wealth threshold of the 200th
entry, which is 500 Mio e and thus goes down to 206
entries.

From the large gap between the highest HFCS reported
wealth (76 Mio e) and the lowest value in the Man-
ager Magazin list, it can be concluded that oversam-
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pling and weights cannot fully compensate for top-tail
bias, and that a compensation for the missing rich is
necessary.

3 Statistical model

The wealth distribution can be represented by a prob-
ability density f(w), such that f(w) dw is the fraction
of households having wealth in [w,w + dw). When
this distribution is known, all interesting observables
can be computed therefrom. The mean wealth w, e.g.,
is given by

w =

∫ ∞
−∞

w f(w) dw (1)

and the total wealth isN ·w, whereN is the total num-
ber of households. The percentile wp, i.e. the wealth
value for which p percent of the households are richer,
is implicitly defined by

p =

∫ ∞
wp

f(w) dw (2)

and from this value, the wealth share sp of the richest
p percent are given by

sp =

∫∞
wp
w f(w) dw∫∞

−∞w f(w) dw
(3)

3.1 Density estimation

The density f(w) must be estimated from the HFCS
data or the rich list, which both provide lists of wealth
values w1 < w2 < . . . < wk and correspond-
ing weights n(wi), such that wi is the wealth of the
i-th sample household and n(wi) is the number of
households that this value represents. The approach
in [8, 9, 10] is to approximate f(w) below some
threshold w0 with a histogram having cells centered
at (wi)ki=1 and to use a parametric model based on the
Pareto distribution for w > w0. This results in the fol-
lowing histogram density estimator for w ≤ w0:

f̂(w) =
2 · n(wi)

N · (wi+1 − wi−1)
(4)

for each histogram cell centered around wi, i.e.,
(wi−1 + wi)/2 < w ≤ (wi + wi+1)/2. Here, N is
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Figure 1: Density approximation with Eqs. (4) & (5)
from the averaged HFCS data for Germany with w0 =
3 · 106 e. For comparison, the kernel density according
to Eq. (6) is shown with bandwidth h = 0.25 · 106 e.

the total sum over all weights, i.e., N =
∑

i n(wi).
For w > w0, the density is approximated with a Pareto
distribution:

f̂(w) = C · w−(α+1) (5)

As can be seen in Fig. 1, the histogram obtained from
the HFCS data is very noisy in the transition region.
A smoother estimate for f(x) can be obtained with a
weighted kernel density estimator [11]

f̂kern(w) =
1

Nh

∑
i

n(wi) ·K
(
w − wi
h

)
(6)

whereK(x) = (2π)−1/2e−x
2/2 and h is a band-width.

This approximation, however, introduces yet another
parameter h and makes a numeric integration for com-
puting the integrals in Eq. (3) necessary.

The model given by Eqs. (4) & (5) has three parame-
ters:

• the threshold w0

• the power α in the Pareto distribution

• the normalization constant C

Methods for determining these parameters are pre-
sented in section 4.

3
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3.2 Percentile share computation

When the model (4) & (5) is inserted into Eq. (2), the
percentile wp is given by (again N =

∑
i n(wi))

1− p = 1

N

∑
wi<wp

n(wi) (7)

if the resulting wp is less than w0. For wp > w0, it is
given by

p =

∫ ∞
wp

Cw−(α+1) dw =
C

α
· w−αp (8)

The resulting wealth share (3) is for wp > w0:

sp =
C
α−1 w

−(α−1)
p∑

wi<w0

n(wi)
N + C

α−1 w
−(α−1)
0

(9)

and for wp < w0:

sp =

∑
wp≤wi<w0

n(wi)
N + C

α−1 w
−(α−1)
0∑

wi<w0

n(wi)
N + C

α−1 w
−(α−1)
0

(10)

It should be noted that the integrals over the Pareto
distribution have been evaluated analytically to obtain
these formulas. Bach et al. [9] have instead “imputed”
wealth values for w > w0 with weights drawn from
the Pareto distribution. This leads to the same results,
because this imputation is basically a numeric integra-
tion.

Eckerstorfer et al. observed that the upper limit in the
integrals in (3) actually is not infinity, but some finite
value wmax. In this case, the term w

−(α−1)
0 in (9) &

(10) has to be replaced with (w
−(α−1)
0 −w−(α−1)max ). The

upper limitwmax can be estimated from a rich list as the
highest value plus half the distance to the second high-
est value. For Germany, the Manager Magazin rich list
leads to wmax ≈ 20 · 109 e, so that a truncation at this
value only affects the fourth decimal place.

3.3 Model validation

While the approximations (4) or (6) are non-
parametric and make no assumptions about the shape
of the wealth density f(w), the approximation (5) only
makes sense when the density is actually close to the
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Figure 2: Test of van der Wijk’s law for the averaged
HFCS data and the Manager Magazin rich list for Ger-
many.

density of the Pareto distribution for w > w0. This
assumption can be verified by testing whether the av-
erage wealth above a threshold w0 follows van der
Wijk’s law:

W bw0c =

∫∞
w0
w f(w) dw∫∞

w0
f(w) dw

=
α

α− 1
· w0 (11)

While it is easy to see that van der Wijk’s law holds for
the Pareto density by inserting f(w) = Cw−(α+1) on
the left hand side of Eq. (11), it is also the other way
around: the Pareto distribution is the only distribution
for which (11) holds2.

Eq. (11) thus provides a simple test whether the tail of
the survey data follows a Pareto distribution: compute

W bw0c

w0
=

∑
wi>w0

wi · n(wi)
w0
∑

wi>w0
n(wi)

(12)

and check whether it is constant. As can be seen in
Fig. 2, van der Wijk’s law holds for the HFCS data for
w0 > 0.5 · 106 e and for the Manager Magazin data
for w0 > 500 · 106 e. This seems to be a contradic-
tion, because it seems to imply that somewhere above
the highest HFCS wealth (76 Mio e) the distribution
deviates from the Pareto shape. It is however in accor-
dance with Bach’s observation that the Manager Mag-
azin data tends to become unreliable for more than the
200 highest entries [9], which corresponds to wealths
below 500 Mio e.

2To see this, differentiate (11) with respect to w0 and solve the
resulting differential equation for the complementary cumulative
distribution function F (w0) =

∫∞
w0

f(w) dw.

4
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4 Parameter determination

The focus in the published literature so far has been on
the determination of the power α in the Pareto distri-
bution, which is summarized in section 4.1. The sub-
sequent sections discuss methods for determining the
normalization constant C and propose a new method
for a unique choice for the transition threshold w0, a
problem to which little attention has been given previ-
ously.

4.1 Power α

A simple estimator for α can be obtained by solving
van der Wijk’s law (11) & (12) for α:

α̂wijk =

[
1− wminN(wmin)∑

wi≥wmin
wi · n(wi)

]−1
(13)

where wmin is the wealth threshold, above which
the data is used for estimating α, and N(wmin) =∑

wi≥wmin
n(wi) is the sum of all weights greater than

wmin. The Monte-Carlo experiments in section 5.1 in-
dicate that this estimator has both considerable bias
and variance.

An estimator obtained from the maximum-likelihood
(ML) principle is therefore preferable, because ML-
estimators are generally known to be consistent [12].
The weights n(wi) can be incorporated into the ML
estimator by treating each measured value wi as if it
were measured n(wi) times. This yields the estimator
[8]

α̂ml =

 ∑
wi≥wmin

n(wi)

N(wmin)
ln

(
wi
wmin

)−1 (14)

Another estimator for α can be obtained from the
complementary cumulative distribution function of the
Pareto distribution:

N(wi)

N
≈ P (W > w) =

∫ ∞
w

f(w) dw =
C

α
· w−α

⇒ N(wi)

N(wmin)
≈
(
wi
wmin

)−α
(15)

Taking the logarithm on both sides leads to a linear re-
lationship yi = −αxi, from which α can be estimated

with a least squares fit as the linear regression coeffi-
cient

α̂reg =
∑
i

xiyi

/∑
i

x2i with (16)

yi = ln

(
N(wi)

N(wmin)

)
and xi = ln

(
wi
wmin

)
When the linear regression is not done with Eq. (16),
but with built in routines of a statistical software pack-
age, it is important to set the “intercept term” to zero,
because otherwise the least square fit is done with a
different formula that additionally estimates a constant
term3.

Clauset et al. [12] made Monte-Carlo experiments to
compare the least squares fit estimator α̂reg with the
maximum likelihood estimator α̂ml. They found that
α̂reg showed noticeable bias, while α̂ml was practi-
cally unbiased. Vermeulen [8] made Monte-Carlo ex-
periments under the assumption of a non-response rate
that was correlated with wealth according to [7]. This
lead to considerable bias, which was slightly stronger
for α̂ml than for α̂reg.

Another problem with ansatz (15) is that it is not ap-
plicable in the presence of missing data, e.g. for the
combined HFCS and Manager Magazin data, which
have a considerable gap between the highest HFCS
and lowest Manager Magazin wealth value. Eq. (15)
is based on the complementary empirical distribution
function, and thus requires knowledge of the weight of
the missing values, which cannot be estimated with-
out knowing α beforehand. The same problem affects
ansatz (12) and the resulting estimator (13). The max-
imum likelihood estimator, however, does not suffer
from this shortcoming, because the term N(wmin) in
(14) is not used as an estimator for the distribution
function, but simply represents the total number of
measured values.

Whichever of the estimators for α is used, in any
case a choice for wmin is necessary. Bach et al. [9]
based their choice on a visual inspection of Fig. 2
and set wmin somewhere at the beginning of the re-
gion where the curve is roughly constant. This ap-
proach, however, does not yield a well-defined algo-
rithm for the exact choice of wmin, and an optimal-
ity criterion based on the goodness-of-fit is prefer-

3In R, this is achieved by using the formula “y ∼ 0+ x” in the
function lm.
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Figure 3: Goodness-of-fit criterion after Kolmogorov-
Smirnov (KS).

able. Goodness-of-fit is typically measured with the
distance between the empirical cumulative distribution
function Femp(w) and the fitted cumulative distribu-
tion function Ffit(w). Clauset et al. [12] recommended
the Kolmogorov-Smirnov criterion, which is the max-
imum distance between the two distribution functions
(see Fig. 3):

KS = max
w≥wmin

∣∣Ffit(w)− Femp(w)
∣∣ (17)

= max
wi≥wmin

∣∣∣∣∣
(
wi
wmin

)−α
− N(wi)

N(wmin)

∣∣∣∣∣
while Eckerstorfer et al. [10] used the Cramer-van
Mieses criterion, which is based on the area between
the distribution functions:

CM =

∫ ∞
wmin

(
Ffit(w)− Femp(w)

)2
ffit(w) dw (18)

When the integral is numerically evaluated with the
trapezoidal rule, the criterion becomes

CM =
∑

wi≥wmin

(wi+1 − wi)
g(wi) + g(wi+1)

2
(19)

where g(w) is the integrand in (18), i.e.

g(wi) =

((
wi
wmin

)−α
− N(wi)

N(wmin)

)2

w
−(α+1)
i

As can be seen in Fig. 4, both criteria have typically
the same qualitative dependency on wmin with a mini-
mum at almost the same position. This means that both
criteria yield very similar optimal choices for wmin.
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Figure 4: Goodness-of-fit criteria after Kolmogorov-
Smirnov (KS) and Cramer-van Mieses (CM) as a func-
tion of wmin for the averaged HFCS data for Germany
and α̂ml. The CM-values have been multiplied by 250 to
make the curves comparable.

4.2 Normalization constant C

The normalization constant C in the Pareto distri-
bution f(w) = C · w−(α+1) for w > w0 must
be chosen such that the density combined from
HFCS-histogram and Pareto-fit is normalized to one,
i.e.
∫∞
−∞ f(w) dw = 1. Bach et al. [9] have achieved

this by setting the weight of the Pareto tail equal to the
HFCS weight of all households with wealth w > w0:

1

N

∑
wi>w0

n(wi) =

∫ ∞
w0

C w−α−1dw

⇒ C = αwα0
1

N

∑
wi>w0

n(wi) (20)

As the data frequency in the region around w0 is typi-
cally quite low, this choice has the effect that C varies
in a discontinuous way as w0 moves across a data
point. Eckerstorfer et al. [10] used the same method,
but with wmin (see section 4.1) instead of w0:

C ′ = αwαmin
1

N

∑
wi>wmin

n(wi) (21)

The choice (21) for the normalization constant has
the side effect that the estimated density function is
no longer normalized to one, but the area under the
density function depends on the choice for w0. To
make sure that the total number N of all households

6
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remained unchanged, Eckerstorfer et al. rescaled all
HFCS weights for wealth values below wmin to

n′(wi) = β′ · n(wi) for wi ≤ wmin (22)

where

β′ =

N −
∑

wmin<wi≤w0

n(wi)−
(
wmin
wo

)α ∑
wi>wmin

n(wi)∑
wi≤wmin

n(wi)
(23)

A new way to obtain yet another estimate C ′′ for the
normalization constant consists in a utilization of the
rich list, which gives the exact number of households
Ñw1 above some wealth threshold w1:

Ñ(w1)

N ′
= C ′′

∫ ∞
w1

w−α−1dw (24)

where Ñ(w1) is the number of households in the rich
list with wealth greater or equal w1. N ′ is the total
number of households, which is increased by (24) to

N ′ =
∑
wi≤w0

n(wi) +N ′C ′′
∫ ∞
w0

w−α−1dw (25)

Evaluating the integrals in (24) and (25) and solving
for C ′′ and N ′ yields

N ′ =
∑
wi≤w0

n(wi) + Ñ(w1)

(
w1

w0

)α
(26)

C ′′ =
Ñ(w1)

N ′
αwα1 (27)

The threshold w1 should be chosen as low as possible,
yet still in the region where van der Wijk’s law holds
for the rich list data. For the Manager Magazin data,
e.g., it can be concluded from Fig. 2 that w1 ≈ 500
Mio e is a reasonable threshold for this rich list. As
wealth values in this list are only rough estimates and
the gap to the next wealth value is 50 Mio e, the most
conservative choice is to use Ñ(w1) with w1 = 500
Mio e and wα1 with w1 = 450 Mio e.

4.3 Transition threshold w0

Little attention has been paid in the literature to the
choice of the transition threshold w0. From the dis-
cussion in section 4.1, it would seem natural to set
it equal to wmin, i.e., to the threshold that yields the

w0 [Mio e] s0.01 with C s0.01 with C ′

wmin 0.292 0.292
1.0 0.290 0.292
3.0 0.303 0.283
5.0 0.266 0.301
7.0 0.279 0.292
9.0 0.303 0.281

11.0 0.322 0.274

Table 1: Impact of the choice of w0 on the resulting top
percent wealth share s0.01 for the averaged HFCS data
for Germany with wmin = 561400 e and α = 1.4735.
The weight normalization has been made with C given
by Eq. (20), and with C ′ given by Eqs. (21) to (23).

best fit according to a goodness-of-fit criterion. Sur-
prisingly, both Bach et al. and Eckerstorfer et al. set it
much higher: wmin = 0.5 Mio e & w0 = 3 Mio e
(Bach et al. for Germany [9]) and wmin ≈ 0.3 Mio e
& w0 = 4 Mio e (Eckerstorfer et al. for Austria [10]).

Eckerstorfer et al. argued: “We choose this e4 mil-
lion cut-off point because the frequency of observa-
tions starts to markedly decline beyond this level of net
wealth.” They also observed that changingw0 to 3 Mio
e or 5 Mio e only had a minor impact on the final re-
sults. This does not explain, however, why w0 should
be limited to this range. As can be seen from Table
1, there actually are noticeable differences for the re-
sulting top percent share as w0 varies. It is therefore
desirable to have a well-defined criterion for choosing
w0.

A natural way to restrict the choice of w0 is by im-
posing the demand of continuity upon the estimated
density function f̂(w). As can be seen from Fig. 1,
this is not a reasonable assumption for the histogram
estimator from the HFCS data, which is discontinuous
itself. It is reasonable, however, for the kernel density
estimator f̂kern(w) given by Eq. (6). This leads to the
ansatz

f̂kern(w0)− C · w−(α+1)
0 = 0 (28)

which is to be solved for w0 numerically. As Eq. (28)
generally has more than one solution w0, the smallest
zero greater than wmin should be chosen. For the av-
eraged HFCS data for Germany and the normalization
with (20) or (21), this leads to w0 ≈ 830 000 e when
the kernel density bandwidth is automatically selected
from all data points greater than wmin with the method
by Sheather & Jones4 [13], which yields a bandwidth

4This is implemented as method “SJ” in the R function density
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5 Results

Section 4.1 gives different possible estimators for the
power α, and the Monte-Carlo study [12] favors the
maximum-likelihood estimator α̂ml given by (14) over
the regression estimator α̂reg given by (16), while [8]
favors the regression estimator. The estimator based on
van der Wijk’s law α̂wijk given by (13) has not yet been
studied in the literature.

Therefore, bias and mean-squared-error of these three
estimators was first compared in Monte-Carlo experi-
ments. The best performing estimator in these experi-
ments, which was α̂ml, was then used to estimate both
the power α and the wealth share of the richest percent.

5.1 Estimator comparison by simulations

To compare the three estimators, 5000 sample values
were drawn from a Pareto distribution with the func-
tion rpareto from the R package actuar [14]. The pa-
rameter α was set to 1.5 because this had turned out to
be a cross-country constant in different studies accord-
ing to Gabaix [15], andwmin was set to 0.5 Mioe. This
was repeated 1000 times to estimate bias and mean

squared error (MSE) of the three estimators. Two addi-
tional variants of the experiments were implemented:

• to simulate the cutoff in the HFCS data, values
greater than 75 Mio e were rejected

• to simulate the HFCS weighting process, weights
were added that represent the exact area under the
Pareto density in a cell around each sample value

As both variants could be applied or not, this lead to
four different simulations. The results are shown in Ta-
ble 2: the maximum-likelihood estimator α̂ml showed
the smallest MSE in all cases, and the estimator based
on van der Wijk’s law the largest. According to these
results, the maximum-likelihood estimator is the most
preferable.

It is interesting to note that adding an intercept term in
the linear regression did not improve the least squares
fit, but lead both to a larger MSE and and to poorer
goodness-of-fit values compared to a linear regression
without an intercept term (see the values for α̂reg′ in
Table 2). This seems surprising at first sight because
one would expect that an additional fit parameter im-
proves the fit. This does not hold in this case, however,
because the model with the additional parameter no
longer represents the underlying distribution.

cutoff weighted type mean
√
s2 MSE KS CM

α̂ml 1.4997 0.0215 0.000462 0.010246 0.000018
no no α̂reg 1.4956 0.0238 0.000587 0.011865 0.000030

α̂reg′ 1.4924 0.0294 0.000924 0.013691 0.000052
α̂wijk 1.5108 0.0552 0.003159 0.017555 0.000128
α̂ml 1.5061 0.0213 0.000491 0.010484 0.000020

yes no α̂reg 1.5106 0.0228 0.000632 0.012041 0.000031
α̂reg′ 1.5171 0.0279 0.001073 0.013736 0.000050
α̂wijk 1.5707 0.0237 0.005551 0.022747 0.000190
α̂ml 1.5005 0.0003 0.000000 0.001000 0.000000

no yes α̂reg 1.4971 0.0006 0.000009 0.000765 0.000000
α̂reg′ 1.4954 0.0011 0.000022 0.001124 0.000001
α̂wijk 1.5309 0.0087 0.001031 0.008186 0.000035
α̂ml 1.5063 0.0001 0.000040 0.001975 0.000001

yes yes α̂reg 1.5109 0.0025 0.000125 0.003070 0.000004
α̂reg′ 1.5173 0.0040 0.000315 0.004595 0.000009
α̂wijk 1.5708 0.0018 0.005017 0.017273 0.000154

Table 2: Mean, standard deviation
√
s2, MSE, and goodness-of-fit criteria KS and CM of the three estimators for data

randomly drawn from a Pareto distribution with true value α = 1.5. α̂reg is the proper linear regression estimator given
by Eq. (16), and α̂reg′ is a linear regression estimator with an additional intercept term.
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averaged HFCS Manager Magazin
estimator goodness-of-fit α wmin goodness-of-fit α wmin

KS = 0.023479 1.4735 561400 e KS = 0.057548 1.5168 500 Mio e
α̂ml CM = 0.000093 1.4877 559100 e CM = 0.000764 1.5777 550 Mio e

KS = 0.025494 1.5179 538292 e KS = 0.077164 1.4377 500 Mio e
α̂reg CM = 0.000111 1.5091 557932 e CM = 0.000679 1.4377 500 Mio e

KS = 0.028566 1.5315 538292 e KS = 0.078456 1.4326 500 Mio e
α̂reg′

CM = 0.000133 1.5313 535300 e CM = 0.000687 1.4326 500 Mio e
KS = 0.040020 1.6032 546800 e KS = 0.066083 1.6255 550 Mio e

α̂wijk CM = 0.000282 1.5955 540500 e CM = 0.000893 1.6255 550 Mio e

Table 3: Comparison of the results of the different estimators different goodness-of-fit criteria for estimating α and
wmin on the averaged HFCS data for Germany and the Manager Magazin rich list. α̂reg is the proper linear regression
estimator given by Eq. (16), and α̂reg′ is a linear regression estimator with an additional intercept term.

5.2 Estimation of α

Table 3 shows the results of the different estimators
on the averaged HFCS data for Germany. The values
for wmin have been determined by selecting the best fit
(highest KS, or CM, respectively) from all wealth val-
ues wi in the data. The ranking of the different estima-
tors is the same as in the simulations in the preceding
section: the maximum-likelihood estimator shows the
best goodness-of-fit with respect to both criteria, and
the estimator based on van der Wijk’s law shows the
poorest goodness-of-fit. In agreement with Fig. 4, both
goodness-of-fit criteria yield similar results forwmin. It
should be noted that the value α ≈ 1.53 reported by
Bach et al. in [9] is the value obtained by linear regres-
sion with an intercept term.

Table 3 also gives the results for the Manager Maga-
zin rich list for Germany. It is interesting to note that
α̂ml is higher than for the HFCS data, while α̂reg is
lower, albeit not as low as reported by Bach et al. in
[9]. This discrepancy stems from the way in which
Bach et al. used the rich list: they did not aggregate
the household data by wealth, such that each value
only had weight one, with the same wealth listed as
often as the number of households. This has no effect
on α̂ml, but introduced systematic bias into α̂reg. The
results reported for α̂reg by Bach et al. were therefore
systematically too small when the Manager Magazin
data was included in their calculation.

The estimators for α obtained from the rich list are less
reliable than the estimators obtained from the HFCS
data for two reasons:

• The rich list data with wi ≥ wmin only represents
about 200 households, while the HFCS data with

wi ≥ wmin represents about 2.5 Mio households.
This does not only make the fitting process less
robust, but also means that missing data in the
rich list have a stronger effect.

• The wealth values in the rich list are only rough
estimates and there is a considerable gap between
wi = wmin and wi−1. This makes the exact place-
ment of the threshold wmin and thus also the esti-
mator for α less accurate than for the tightly ly-
ing HFCS data. The choice wmin = 475 Mio e
instead of 500 Mio e, e.g., which includes ex-
actly the same number of households because it
is the mid point between 500 Mio e and the next
reported wealth, leads to α̂ml = 1.407288.

It is therefore advisable to use the rich list data only in
combination with the HFCS data, thereby leading to a
refinement of the estimator obtained from the HFCS
data. For reasons explained in section 4.1, only the
maximum-likelihood estimator α̂ml can be used for
combined data.

The results for the combined fits are shown in Table 4.
Note that the “average” value is not the average of the
values given below, but the maximum-likelihood es-
timator obtained from the averaged individual wealth
values. That the resulting estimator from the averaged
data with the Cramer-van Mieses goodness-of-fit cri-
terion is greater than the estimator for each individ-
ual dataset is surprising, but can be explained by the
highly non-linear relationship between thewi andwmin

and α̂ml.

Taking the Manager Magazin rich list into account de-
creases α, albeit only marginal: these changes to the
fourth significant digit are smaller than the variation

9
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due to the variety of imputations, which affects the
third significant digit. Bach et al. reported in [9] a
much greater decrease of α when the rich list data was
taken into account (from 1.535 to 1.370), but their re-
sults were based on a least squares fit on the data points
N(wi) =

∑
wj≥wi

n(wj) with the assumption that the
missing data between the highest HFCS and the low-
est Manager Magazin wealth had zero weight. Such an
assumption leads to additional bias of the least squares
fit estimator α̂reg. The maximum-likelihood estima-
tors reported in Table 4 do not suffer from this problem
and lead to the conclusion that α lies between 1.443
and 1.481 for Germany, depending on the imputation
variant.

5.3 Estimation of one percent share

Table 5 shows the estimated wealth share of the rich-
est p percent in Germany when the different ways
for normalizing the Pareto distribution are applied: C
stands for the method by Bach et al. given by Eq. (20),
C ′ for the method by Eckerstorfer et al. given by
Eq. (21), and C ′′ for the new method utilizing the rich
list as given by Eq. (27). The transition thresholds w0

have been determined with the continuity condition
(28). These have been computed for all five imputed
datasets and the averaged dataset separately, but are
given in Table 5 only for the averaged dataset.

The results for normalizations C and C ′ are compa-

HFCS wmin α̂ml α̂ml

variant criterion HFCS combined
KS → 561 400 e 1.4735 1.4723avg
CM→ 559 100 e 1.4877 1.4865
KS → 561 500 e 1.4664 1.46521
CM→ 558 000 e 1.4810 1.4798
KS → 564 030 e 1.4802 1.47902
CM→ 563 430 e 1.4827 1.4814
KS → 597 000 e 1.4680 1.46663
CM→ 595 800 e 1.4691 1.4677
KS → 619 800 e 1.4499 1.44854
CM→ 618 000 e 1.4604 1.4590
KS → 561 500 e 1.4454 1.44435
CM→ 561 500 e 1.4622 1.4611

Table 4: Maximum-likelihood estimator for α obtained
from the combined HFCS (wi ≥ wmin) and Manager
Magazin (wi ≥ 500 Mio e) data. “HFCS variant” means
the five differently imputed datasets and the averaged im-
putation.

normalization method
C C ′ C ′′

w0 (avg) 820 790 839 135 1 791 065
(avg) 0.292 0.293 0.334

s0.01 (min) 0.287 0.284 0.323
(max) 0.305 0.301 0.344
(avg) 0.493 0.491 0.565

s0.05 (min) 0.492 0.479 0.529
(max) 0.504 0.494 0.567
(avg) 0.619 0.617 0.675

s0.10 (min) 0.619 0.609 0.661
(max) 0.628 0.621 0.690

Table 5: Wealth share of the richest p ∈
{0.01, 0.05, 0.10} percent when the α and wmin
values from the rightmost column for goodness-of-fit
criterion KS in Table 4 are used. avg is the result for the
averaged data, min/max the minimum/maximum share
over all five datasets. The normalization methods refer to
section 4.2.

rable, but the shares obtained with the normalization
based on the rich list are 4 to 6 percentage points
higher. This is not unexpected, because the normal-
ization methods by Eckerstorfer et al. and by Bach et
al. both remove weights above wmin and assign it to
higher wealth. The underlying assumption is that the
total number of weights assigned to wealths greater
than wmin (or greater than w0 in Bach’s case) is esti-
mated correctly in the HFCS data. The new method
based on the rich list assumes, however, that the num-
ber of households in the rich list is correct instead,
which means that the total number of households with
high wealth is estimated too low in the HFCS data.
The author considers the latter to be a more realistic
assumption; actually this is the main reason for using
the rich list at all.

6 Conclusions

The maximum-likelihood estimator for the power α of
the Pareto distribution showed the best performance
both in the Monte-Carlo simulations and the goodness-
of-fit tests on the HFCS data, and it is therefore recom-
mended for fitting a Pareto distribution to wealth sur-
vey data. Combining the HFCS data with data from a
rich list has little impact on the maximum-likelihood
estimator for α. Neither does the resulting wealth
share of the richest percent increase when rich list data
is taken into account only for estimating the power α.
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If the rich list is used, however, for estimating the nor-
malization constant C in the Pareto distribution, the
wealth share increases about four percentage points in
comparison to an estimation of this normalization con-
stant from the HFCS data.

The new method for determining the transition thresh-
old w0 by imposing a continuity condition on the
wealth distribution density provides a way for remov-
ing the arbitrariness of this parameter. It relies on a
kernel density estimator for the wealth density. Theo-
retically, this kernel density estimator can also be uti-
lized for computing the top percent wealth share by
numeric integration. It would be interesting to investi-
gate whether this would make the dependency of the
wealth share on the choice of w0 less noisy.
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