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Abstract
In this paper, it is demonstrated through a case study that multilayer feedforward neural networks activated

by ReLU functions can in principle be trained iteratively with Mixed Integer Linear Programs (MILPs) as
follows. Weights are determined with batch learning. Multiple iterations are used per batch of training data. In
each iteration, the algorithm starts at the output layer and propagates information back to the first hidden layer
to adjust the weights using MILPs or Linear Programs. For each layer, the goal is to minimize the difference
between its output and the corresponding target output. The target output of the last (output) layer is equal to
the ground truth. The target output of a previous layer is defined as the adjusted input of the following layer.
For a given layer, weights are computed by solving a MILP. Then, except for the first hidden layer, the input
values are also modified with a MILP to better match the layer outputs to their corresponding target outputs.
The method was tested and compared with Tensorflow/Keras (Adam optimizer) using two simple networks on
the MNIST dataset containing handwritten digits. Accuracies of the same magnitude as with Tensorflow/Keras
were achieved.

1 Introduction

Neural networks typically learn by adjusting weights
using nonlinear optimization in a training phase. Vari-
ants of gradient descent are often used. These tech-
niques require “some” differentiability of the er-
ror functional. Therefore, piecewise linear activation
functions like the Rectified Linear Unit (ReLU)

σ(x) := max{0,x}

or the Heaviside function, that are not differentiable
at the origin, raise the question of whether linear and
mixed integer linear programming techniques are also
suitable for network training.

Learning to near optimality can be done with Lin-
ear Programs (LP) of exponential size for certain net-
work architectures, see [1]. But this is not applicable
in practice. Mixed Integer Linear Programs (MILPs)
are proposed in [2] to find inputs of ReLU networks
that maximize unit activation. This can help to under-
stand the features computed in the network. To this
end, the weights are not variable. The output of a neu-
ron is modeled by the same constraints as in [3], where
MILPs are used to count maximum numbers of lin-
ear regions in outputs of ReLU networks. In order to

find vulnerabilities, a trained binary neural network is
attacked by a MILP in [4]. This MILP computes in-
puts for which the network fails to predict. In both this
MILP and in [5], the weights are also considered as
constants. Another approach to evaluate the robustness
of networks is described in [6]. A network layout con-
sisting of nodes and edges is optimized with a MILP
in [7].

The present work investigates the suitability of train-
ing with MILPs, i.e. in contrast to the previously men-
tioned works, network weights are now variables of
the optimization problem. Oracle Inc. holds US patent
[8], which protects the idea of using MILPs for train-
ing parts of (deep) neural networks. The solution de-
scribed in this patent works in a scenario with piece-
wise constant activation functions for hidden neurons
as well as piecewise linear activation functions on the
output layer. Without additional algorithmic interven-
tion, it does not work when values of weights (that are
variables in the optimization problem) have to be mul-
tiplied. This is the case when activation functions that
are not piecewise constant are used on successive lay-
ers. Thus, additional considerations are required for
ReLU-activated networks to use linear optimization
methods.
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By applying the ReLU function σ to each component of the
vector W~x+~c, the output~o is obtained (~x∈Rd ,~o∈Rn,~c∈Rn,
W ∈ Rn×d):

~o = σ(W~x+~c).

Figure 1: Building block of ReLU-activated feedforward network: blocks can be concatenated to realize a deep net-
work. The output ~o of a layer then becomes the input ~x of the next layer, i.e., the dimensions of subsequent building
blocks have to fit. The building blocks do not share weights.

We investigate a backpropagation-like algorithm (see
Algorithm 1) to iteratively train a ReLU network with
LPs and MILPs. The prerequisite is a neural network
with ReLU activation that is a concatenation of build-
ing blocks, as shown in Figure 1. All hidden layers
and the output layer consist of such a building block.
Edges can be removed by setting their weights fixed to
zero. In addition, the equality of weights can be spec-
ified. This makes it possible, for example, to realize
convolutional layers. The input layer only passes val-
ues to the building block of the first hidden layer. Most
deep neural networks follow this architecture but use a
different activation function like softmax on the output
layer. For simplicity, we also use ReLU there.

To evaluate the algorithm, we select the MNIST
dataset1, see [9], that consists of 60.000 images (28×
28 pixels) of handwritten digits for training and 10.000
digits for testing, in connection with two small exam-
ple instances of the discussed network. One instance
consists of 784-8-8-8-10 neurons on five layers (three
hidden fully connected layers), cf. [2, DNN1]. The val-
ues of ten output neurons encode the recognized num-
ber. Another example is a 49-25-10 network with a
convolutional (single feature-map) and a subsequent
fully connected layer. To apply the network, the im-
ages are downsampled to a size of 7× 7 gray values
by taking the mean values of 4×4 regions. The size of
the convolution kernel is 3×3, all offsets c j are set to
zero. For both network instances, the index of an out-

1http://yann.lecun.com/exdb/mnist/

put neuron whose output is closest to one represents
the detected number. The accuracy is the relative num-
ber of true detections.

On batches (subsets) of training data (which sadly
must be small because of runtimes), we determine
the weights using Algorithm 1, that consists of three
MILPs. They are specified in the next section. Then the
results are compared with those of gradient descent as
implemented by the widely used Adam optimizer [10].

2 Mixed Integer Linear Programs
and Linear Programs

2.1 Computation of weights

We determine weights W ∈ Rn×d ,

W = [wl, j]l∈[n], j∈[d]:={1,...,d},

and~c∈Rn (with components c j) of one building block
(see Figure 1) with d inputs and n outputs. In order to
formulate rules (4)–(6) below, we need to bound the
weights. Thus, we choose−1≤ wl, j,c j ≤ 1. Given are
m input vectors ~x1, . . . ,~xm with d nonnegative compo-
nents each. We denote component j of~xk with xk, j ≥ 0.
The weights have to be chosen such that the m output
vectors ~o1, . . . ,~om are closest to given target vectors
~t1, . . . ,~tm in the l1 norm

∑m
k=1
∑n

j=1 |ok, j− tk, j|. To this

2
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Algorithm 1 Iterative backpropagation-like learning with MILPs
procedure LEARN WEIGHTS(training input data, training ground truth data)

Randomly initialize all weights
accuracy := 0, last accuracy := -1, target values := training ground truth data
while accuracy > last accuracy do

last accuracy := accuracy
Compute all neuron outputs~o for training input data
for i := number of output layer back to number 1 of first hidden layer do

Update weights of (output or hidden) layer i with LP/MILP, see Section 2.1:
Minimize l1 norm of differences between output values of layer i and
target values. Input values of layer i are fixed, weights are variables.

if i > 1 then
Compute optimal input values~x of this layer (which are output values~o of the
preceding layer) using a second LP/MILP, see Section 2.2:

Minimize l1 norm of differences between output values of layer i
and target values. Weights of the layer are now fixed.
Input values are variables.

target values := computed optimal input values
For updated weights and training input data, update inputs and outputs of all neurons
Re-compute accuracy

if accuracy < 1 then
Update weights with those belonging to best accuracy that occurred in while-loop
Finally optimize weights of the last layer, see LP in Section 2.3.

end, we express difference ok, j− tk, j via two nonnega-
tive variables δ

+
k, j,δ

−
k, j ≥ 0:

ok, j− tk, j = δ
+
k, j−δ

−
k, j. (1)

This leads to the problem

minimize
m∑

k=1

n∑
j=1

(δ+
k, j +δ

−
k, j) (2)

under following restrictions (3), (4), (5), and (6) that
deal with computing ok, j. For each k ∈ [m] and j ∈ [n]
we compute ok, j = σ

(
ak, j
)
≥ 0,

ak, j := c j +
d∑

i=1

w j,ixk,i, (3)

where σ(x) is the ReLU function. Let M̃ := max{xk, j :
k ∈ [m], j ∈ [d]}. Both ok, j and |ak, j| are bounded by
dM̃ + 1. In Section 2.2 we determine new inputs not
necessarily bounded by M̃ but by 1.1 · M̃ + 0.1. Thus,
values of ok, j and |ak, j| are generally bounded by

M := d · (1.1 · M̃+0.1)+1.

To implement the piecewise definition of ReLU, we
introduce binary variables bk, j that model, for input

~xk, whether a neuron j fires (value 1) or does not
fire (value 0), i.e., if the input of ReLU exceeds zero
(cf. [2], [4], [3]):

−M(1−bk, j)≤ ak, j ≤Mbk, j. (4)

If bk, j = 1, output ok, j, 0≤ ok, j ≤M, of neuron j equals
ak, j for input~xk. Otherwise for bk, j = 0, the output ok, j
has to be set to zero:

−M(1−bk, j)≤ ok, j−ak, j ≤M(1−bk, j), (5)

0≤ ok, j ≤Mbk, j. (6)

The MILP can be divided into n independent MILPs
that calculate d +1 weights separately for each of the
n neurons of the layer.

In theory, these MILPs can be replaced by 2m LPs as
follows. Let j ∈ [n]. For each k ∈ [m], we can add con-
straints ak, j < 0 or ak, j ≥ 0 to avoid binary variables
and obtain LPs. Then, the weights are determined by a
smallest objective value of all problems.

We really replace the MILP of the last layer by a single
LP, which is potentially much faster than the MILP: To
test the network, we use ground truth data consisting
of one-hot vectors. If the digit to be recognized is j,
0 ≤ j ≤ 9, then the jth component is one, all other

3
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components are zero. Since the prediction is an output
closest to one, we can replace ReLU with the iden-
tity function to obtain a linear problem, i.e. ok, j := ak, j
without constraints (4)–(6) such that ok, j may be neg-
ative. Instead of objective function (2) we deal with

minimize
m∑

k=1

n∑
j=1

δk, j, (7)

where

δk, j :=

{
δ
+
k, j : ground truth tk, j = 0

δ
+
k, j +δ

−
k, j : ground truth tk, j = 1.

(8)

In the linearized version (7) of the error functional, we
do not consider δ

−
k, j in the case tk, j = 0 because only

positive ReLU inputs ak, j contribute to the error. Non-
positive inputs would be set to zero by applying the
ReLU function and then match tk, j = 0.

2.2 Proposing layer inputs

After optimizing the weights of a layer, its input data
are slightly adjusted to further minimize the output er-
ror of that layer. This is described in what follows.

To adjust the input of a layer, basically the same
MILP/LP as before can be used. Now weights W ∈
Rn×d and~c ∈ Rn of one building block (see Figure 1)
with d inputs and n outputs are given and are not vari-
able. We need to find m input vectors ~x1, . . . ,~xm each
with d components (which are now variables xk, j ≥ 0,
k ∈ [m], j ∈ [d]), so that for given weights, the problem
(2) is solved under constraints (1), (3), (4), (5), and (6)
for all but the last layer. For the last layer, problem
(7) is solved under restrictions ok, j = ak, j, (1), (3), (8).
Only small adjustments of inputs promise not to lead
to major changes in the weights in subsequent steps.
This is important since we do not want to forget infor-
mation that has already been learned. Let x̃k, j be the
input of the layer previous to this optimization step.
Then we add bounds

max{0,0.9 · x̃k, j−0.1} ≤ xk, j ≤ 1.1 · x̃k, j +0.1. (9)

The bounds are helpful beyond that. Because without
them, the runtime for determining subsequent weights
increases significantly. Inputs can be calculated inde-
pendently for each of the m training input vectors.

Instead of adjusting inputs to optimally match desired
outputs of one single layer, an alternative approach

would be to consider all subsequent layers with the
goal of minimizing the distance to the ground truth.
With weights held fixed, this is a linear problem sim-
ilar to the tasks in [2, 4], etc. However, it turned out
that considering more than one layer is not necessary
due to the chosen iterative approach.

2.3 Post-processing of the weights of the last
layer

So far, the objective functions have been built on the l1

norm, which is needed in particular for weight calcula-
tion of hidden layers. But now, in a final step (see Al-
gorithm 1), we adjust the weights of the last layer with
an LP by minimizing

∑m
k=1
∑n

j=1(δk, j − sk, j) where
variables δk, j are defined in (8), and slack variables 0≤
sk, j ≤ 0.49 are additionally constrained by sk, j ≤ δk, j.
Thus, we allow deviations up to 0.49 so that zeroes and
ones of ground truth vectors are still separated.

3 Results and batch learning

Due to runtimes of MILPs, we did not apply all steps
of Algorithm 1 to all 60,000 training images but only
to small subsets (batches) of one hundred images.
However, the LP of the post-processing step is able
to handle the complete training set. The outcome of
Algorithm 1 depends strongly on the initialization
of weights. A good random initialization of weights
w j,i,c j ∈ [−1,1] leads to the results shown in Figure
2 for the 784-8-8-8-10 network. While one can exper-
imentally determine a suitable initialization, a larger
issue is that accuracy is low on all 60,000 images after
training on 100 images. Therefore, we experimented
with iterative batch learning. Algorithm 1 was ap-
plied to an initial batch of images 1-100, and weights
were updated accordingly. Then the algorithm was ap-
plied to images 101-200 on these updated weights, etc.
We use a simple idea to better remember previously
learned images: We do not only initialize weight vari-
ables for a warm start with values from the preced-
ing batch training, but we also limit weight changes
of consecutive batch learning steps. Starting with the
training of the second batch, each weight w := w j,i or
w := c j is additionally bounded depending on the cor-
responding computed weight w̃ of the same layer for

4
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Figure 2: For training with 100 referenced MNIST images and randomly initialized weights, vertical bar segments show
how (while-) iterations in Algorithm 1 increase the accuracy of the 784-8-8-8-10 network until a final accuracy of one is
reached. The accuracy after the first iteration is shown at the bottom. Then the improvement of each subsequent iteration
is added. The post-processing step was not required. Runtimes were measured with CPLEX 12.8.0 on a MacBook Pro
with 16 GB RAM and an i5 processor (two cores).
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Figure 3: Iterative training of the 784-8-8-8-10 network with 20 batches of 100 consecutive images. Weights are
bounded due to (10). The top curve shows the training accuracy with respect to each single batch. The middle curve
represents the accuracy with respect to all training data seen so far. This consists of the current batch and all previous
batches. The bottom curve visualizes the accuracy on the MNIST test dataset with 10,000 images. The runtime was
1,448 s.
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Figure 4: Reducing the resolution contributes to false
detections. Ground truth is given in brackets. The best
detection results (IoU values) were obtained for digit 1,
worst for 5.

the preceding batch (factor 0.6 was determined exper-
imentally):

w̃−0.6 · |w̃|−0.01≤ w≤ w̃+0.6 · |w̃|+0.01. (10)

This approach yielded a best case accuracy of 0.69
on the 10,000 test images (while Tensorflow/Keras
reached a maximum of 73.3% after three epochs with
the Adam optimizer, learning rate 0.001, batch size
100, all random seeds set to 4711), see Figure 3.
Bound (10) also reduced processing times. We also
trained with multiple epochs on shuffled data. To avoid
overfitting, we added noise to ground truth vectors and

tested a dropout strategy. However, all these methods
did not significantly improve accuracy - unlike running
the LP of the post-processing step on all 60,000 train-
ing images. To this end, we did not apply it for each
batch but ran it after completing ten batches (i.e., train-
ing on 1000 images). It then achieved test accuracies
of up to 75.84% within about a thousand seconds pro-
cessor time. A majority vote of a committee of three
networks trained on different sets of 1,000 images in-
creased the accuracy to 79.19%.

For the convolutional network (randomly initialized
with weights in [0,1]), we similarly trained weights
iteratively on ten batches of 100 images (first 1000
images of training set) with rule (10) and then ran
the post-processing step (Algorithm 1, Section 2.3) on
all 60,000 training images in 3,933 seconds proces-
sor time to achieve an accuracy of 87.11%. Downsam-
pling of image resolution was necessary to run MILPS
in reasonable time, but reduces accuracy, see Figure 4.
Using softmax activation on the last layer, the Adam
optimizer (with parameters as before) achieved an ac-
curacy of 93,51% on test data within 40 epochs when
trained with full-resolution 28×28 images. However,
after adding an average pooling layer to reduce reso-
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lution consistent with MILP training to 7× 7 pixels,
only 89,61% accuracy is obtained in one minute (40
epochs). ReLU instead of softmax activation on the
last layer implied worse accuracies up to 46%, thus
MILP training performed better.

4 Conclusion

In this report, we have shown that it is possible to
train networks iteratively based on MILPs. Accuracies
as with the Adam Optimizer can be achieved. Thus,
combinatorial optimization could be an alternative to
gradient-based methods when they encounter difficul-
ties. However, without further consideration, runtimes
currently limit this approach to small training sets and
simple networks. Future work may be concerned with
the improvement of runtimes.
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